
Behaviour Driven
Development

Marc Jeanson

Redline Software Inc.

www.redlinesoftware.com

marc@redlinesoftware.com

Twitter @marcjeanson

mailto:marc@redlinesoftware.com
mailto:marc@redlinesoftware.com

Why Do Software
Projects Fail?

Deliver late or over budget (often both!)

Deliver the wrong thing

Unstable in production

Costly to maintain

Fast
Feedback

Loops

TDD
&

BDD

Terminology

Terminology Overload
Unit Tests

Integration Tests

Acceptance Tests

Regression Tests

White-box Tests

Black-box Tests

Functional Tests

Non-functional Tests

ATDD

ADHD

...etc

...etc...

What is a Unit Test?

It’s a test on a single unit, such as a class
or method, in isolation.

Acceptance Tests

Ideally created by developers and
stakeholders together

Tell us what the system needs to do in order
for the stakeholders to find it acceptable

Much more useful than receiving a
requirements document

Comparison

Acceptance Tests ensure you build the
right thing

Unit Tests ensure you build the thing
right

Refactoring without
tests isn’t refactoring...

...it’s just changing
stuff.

Laws of TDD
You are not allowed to write any production
code unless it is to make a failing unit test
pass.

You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures.

You are not allowed to write any more
production code than is sufficient to pass the
one failing unit test.

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Why TDD?

Avoid wasting time debugging

Improve code quality

Improve design

Regression tests as byproduct

Increased confidence

Behaviour Driven
Development

Think of the behaviour of the system instead
of thinking of the tests

Driven by business value

Promotes “Outside-In Development”

YAGNI

BDD = TDD + automated acceptance testing

BDD Cycle from The RSpec Book

Gherkin

Gherkin
Lets you describe how the application should
behave using a “business readable” DSL

Features (user stories) and scenarios are
specified using Gherkin

Also doubles as documentation that stays
“in-sync” with your codebase

Tools like Cucumber, SpecFlow, jBehave, etc
use Gherkin to generate the test steps

Gherkin Syntax

Feature: [User Story]

Scenario: Title

 Given [Context]

 When [Action]

 Then [Expected Outcome]

Gherkin Syntax
Scenario: Title

Given [Context]

And [More Context]

When [Action]

And [More context]

Then [Expected Outcome]

But [Unexpected Outcome]

Cucumber
Demo

Not just for Rails!

Java with JRuby

.NET using IronRuby

Erlang, Python, PHP, Flex...

https://github.com/cucumber/cucumber/wiki/

https://github.com/cucumber/cucumber/wiki/
https://github.com/cucumber/cucumber/wiki/

Alternatives

.NET: specflow.org

Java: jBehave.org

Javascript: Jasmine

Various: Fitnesse.org

Legacy Apps

How to get started?

Start by adding “black box” tests

➡ Using Cucumber or another acceptance testing
framework

➡ Add them gradually, as you need them

Don’t add “white box” tests

Specification
vs

Characterization

Specification Tests

These are the tests we’ve been talking about
already

Ideally they are written before the
production code

They specify the code we wish we had

Characterization Tests

With legacy code, we want to add tests that
describe the current behaviour of the
application

These tests will be used to ensure that the
correct behaviour is preserved in future
changes

Recipe
1. Write a scenario that exercises some

behaviour of your system

2. Add an assertion that you know will fail

3. Let the failure tell you what the behaviour is

4. Change the test so that it expects the
behaviour that the code is producing

5. Repeat

Bug Fixing

Adding characterization tests to cover the
entire app can take a long time

Starting with bug fixes can be a good
approach

Bug Fix Recipe

1. Translate the bug report into a scenario.

2. Run the scenario. It should fail the same way
as your system currently is.

3. Investigate the busted code. Add additional
characterization tests if needed.

4. Fix the code so the bug scenario passes.

5. Run all the tests to make sure you didn’t add
any regressions.

New Behaviour Recipe
1. Add any necessary characterization tests in

the area that you will be changing

2. Add new scenarios to specify the new
behaviour

3. Run the tests, something should fail. Examine
the code to make it pass.

4. Add extra characterization tests to build up
confidence to change the code if necessary

5. Add the code to make it pass

6. Repeat 3-6 until everything passes

Resources

Buy these books...I stole most of the content in this
section from them

Resources

http://destroyallsoftware.com
http://cleancoders.com

http://destroyallsoftware.com
http://destroyallsoftware.com
http://cleancoders.com
http://cleancoders.com

Questions?

Contact Info

Marc Jeanson

Redline Software Inc.

www.redlinesoftware.com

marc@redlinesoftware.com

Twitter: @marcjeanson

http://github.com/marcjeanson

http://www.redlinesoftware.com
http://www.redlinesoftware.com
mailto:marc@redlinesoftware.com
mailto:marc@redlinesoftware.com
http://github.com/marcjeanson
http://github.com/marcjeanson

